Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.10.11.23296866

ABSTRACT

Background Syndromic surveillance often relies on patients presenting to healthcare. Community cohorts, although more challenging to recruit, could provide additional population-wide insights, particularly with SARS-CoV-2 co-circulating with other respiratory viruses. Methods We estimated positivity and incidence of SARS-CoV-2, influenza A/B, and RSV, and trends in self-reported symptoms including influenza-like illness (ILI), over the 2022/23 winter season in a broadly representative UK community cohort (COVID-19 Infection Survey), using negative-binomial generalised additive models. We estimated associations between test positivity and each of symptoms and influenza vaccination, using adjusted logistic and multinomial models. Findings Swabs taken at 32,937/1,352,979 (2.4%) assessments tested positive for SARS-CoV-2, 181/14,939 (1.2%) for RSV and 130/14,939 (0.9%) for influenza A/B, varying by age over time. Positivity and incidence peaks were earliest for RSV, then influenza A/B, then SARS-CoV-2, and were highest for RSV in the youngest and for SARS-CoV-2 in the oldest age-groups. Many test-positives did not report key symptoms: middle-aged participants were generally more symptomatic than older or younger participants, but still only ~25% reported ILI-WHO and ~60% ILI-ECDC. Most symptomatic participants did not test positive for any of the three viruses. Influenza A/B-positivity was lower in participants reporting influenza vaccination in the current and previous seasons (odds ratio=0.55 (95% CI 0.32,0.95)) versus neither season. Interpretation Symptom profiles varied little by aetiology, making distinguishing SARS-CoV-2, influenza and RSV using symptoms challenging. Most symptoms were not explained by these viruses, indicating the importance of other pathogens in syndromic surveillance. Influenza vaccination was associated with lower rates of community influenza test positivity. Funding UK Health Security Agency, Department of Health and Social Care, National Institute for Health Research.


Subject(s)
COVID-19
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.06.29.23292043

ABSTRACT

SARS-CoV-2 reinfections increased substantially after Omicron variants emerged. Large-scale community-based comparisons across multiple Omicron waves of reinfection characteristics, risk factors, and protection afforded by previous infection and vaccination, are limited, especially after widespread national testing stopped. We studied 245,895 adults >=18y in the UK's national COVID-19 Infection Survey with at least one infection (identified from positive swab tests done within the study, linked from national testing programmes, or self-reported by participants, up to their last study assessment). We quantified the risk of reinfection in multiple infection waves, including those driven by BA.1, BA.2, BA.4/5, and most recently BQ.1/CH.1.1/XBB.1.5 variants, in which most reinfections occurred. Reinfections had higher cycle threshold (Ct) values (lower viral load) and lower percentages self-reporting symptoms compared with first infections. Across multiple Omicron waves, protection against reinfection was significantly higher in those previously infected with more recent than earlier variants, even at the same time from previous infection. Protection against Omicron reinfections decreased over time from the most recent infection if this was the previous or penultimate variant (generally within the preceding year), but did not change or even slightly increased over time if this was with an even earlier variant (generally >1 year previously). Those 14-180 days after receiving their most recent vaccination had a lower risk of reinfection with all Omicron variants except BA.2 than those >180 days from their most recent vaccination. Reinfection risk was independently higher in those aged 30-45 years, and with either low or high Ct values in their most recent previous infection. Overall, the risk of Omicron reinfection is high, but with lower severity than first infections; reinfection risk is likely driven as much by viral evolution as waning immunity.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.08.21267353

ABSTRACT

Given high SARS-CoV-2 incidence, coupled with slow and inequitable vaccine roll-out, there is an urgent need for evidence to underpin optimum vaccine deployment, aiming to maximise global population immunity at speed. We evaluate whether a single vaccination in previously infected individuals generates similar initial and subsequent antibody responses to two vaccinations in those without prior infection. We compared anti-spike IgG antibody responses after a single dose of ChAdOx1, BNT162b2, or mRNA-1273 SARS-CoV-2 vaccines in the COVID-19 Infection Survey in the UK general population. In 100,849 adults who received at least one vaccination, 13,404 (13.3%) had serological and/or PCR evidence of prior infection. Prior infection significantly boosted antibody responses for all three vaccines, producing a higher peak level and longer half-life, and a response comparable to those without prior infection receiving two vaccinations. In those with prior infection, median time above the positivity threshold was estimated to last for >1 year after the first dose. Single-dose vaccination targeted to those previously infected may provide protection in populations with high rates of previous infection faced with limited vaccine supply, as an interim measure while vaccine campaigns are scaled up.


Subject(s)
COVID-19 , Infections
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.13.21264956

ABSTRACT

ABSTRACT Objective To describe the impact of the SARS-CoV-2 pandemic on the incidence of paediatric viral respiratory tract infection in Oxfordshire, UK. Methods Data on paediatric Emergency Department (ED) attendances (0-15 years inclusive), respiratory virus testing, vital signs and mortality at Oxford University Hospitals were summarised using descriptive statistics. Results Between 1-March-2016 and 30-July-2021, 155,056 ED attendances occurred and 7,195 respiratory virus PCRs were performed. Detection of all pathogens was suppressed during the first national lockdown. Rhinovirus and adenovirus rates increased when schools reopened September-December 2020, then fell, before rising in March-May 2021. The usual winter RSV peak did not occur in 2020/21, with an inter-seasonal rise (32/1,000 attendances in 0-3yr olds) in July 2021. Influenza remained suppressed throughout. A higher Paediatric Early Warning Score (PEWS) was seen for attendees with adenovirus during the pandemic compared to pre-pandemic (p=0.04, Mann-Witney U test), no other differences in PEWS were seen. Conclusions SARS-CoV-2 caused major changes in the incidence of paediatric respiratory viral infection in Oxfordshire, with implications for clinical service demand, testing strategies, timing of palivizumab RSV prophylaxis, and highlighting the need to understand which public health interventions are most effective for preventing respiratory virus infections.


Subject(s)
Respiratory Tract Infections , Emergencies
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.18.21262237

ABSTRACT

The effectiveness of BNT162b2, ChAdOx1, and mRNA-1273 vaccines against new SARS-CoV-2 infections requires continuous re-evaluation, given the increasingly dominant Delta variant. We investigated the effectiveness of the vaccines in a large community-based survey of randomly selected households across the UK. We found that the effectiveness of BNT162b2 and ChAd0x1 against any infections (new PCR positives) and infections with symptoms or high viral burden is reduced with the Delta variant. A single dose of the mRNA-1273 vaccine had similar or greater effectiveness compared to a single dose of BNT162b2 or ChAdOx1. Effectiveness of two doses remains at least as great as protection afforded by prior natural infection. The dynamics of immunity following second doses differed significantly between BNT162b2 and ChAdOx1, with greater initial effectiveness against new PCR-positives but faster declines in protection against high viral burden and symptomatic infection with BNT162b2. There was no evidence that effectiveness varied by dosing interval, but protection was higher among those vaccinated following a prior infection and younger adults. With Delta, infections occurring following two vaccinations had similar peak viral burden to those in unvaccinated individuals. SARS-CoV-2 vaccination still reduces new infections, but effectiveness and attenuation of peak viral burden are reduced with Delta.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Pulmonary Disease, Chronic Obstructive
9.
- The COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium; David J Ahern; Zhichao Ai; Mark Ainsworth; Chris Allan; Alice Allcock; Azim Ansari; Carolina V Arancibia-Carcamo; Dominik Aschenbrenner; Moustafa Attar; J. Kenneth Baillie; Eleanor Barnes; Rachael Bashford-Rogers; Archana Bashyal; Sally Beer; Georgina Berridge; Amy Beveridge; Sagida Bibi; Tihana Bicanic; Luke Blackwell; Paul Bowness; Andrew Brent; Andrew Brown; John Broxholme; David Buck; Katie L Burnham; Helen Byrne; Susana Camara; Ivan Candido Ferreira; Philip Charles; Wentao Chen; Yi-Ling Chen; Amanda Chong; Elizabeth Clutterbuck; Mark Coles; Christopher P Conlon; Richard Cornall; Adam P Cribbs; Fabiola Curion; Emma E Davenport; Neil Davidson; Simon Davis; Calliope Dendrou; Julie Dequaire; Lea Dib; James Docker; Christina Dold; Tao Dong; Damien Downes; Alexander Drakesmith; Susanna J Dunachie; David A Duncan; Chris Eijsbouts; Robert Esnouf; Alexis Espinosa; Rachel Etherington; Benjamin Fairfax; Rory Fairhead; Hai Fang; Shayan Fassih; Sally Felle; Maria Fernandez Mendoza; Ricardo Ferreira; Roman Fischer; Thomas Foord; Aden Forrow; John Frater; Anastasia Fries; Veronica Gallardo Sanchez; Lucy Garner; Clementine Geeves; Dominique Georgiou; Leila Godfrey; Tanya Golubchik; Maria Gomez Vazquez; Angie Green; Hong Harper; Heather A Harrington; Raphael Heilig; Svenja Hester; Jennifer Hill; Charles Hinds; Clare Hird; Ling-Pei Ho; Renee Hoekzema; Benjamin Hollis; Jim Hughes; Paula Hutton; Matthew Jackson; Ashwin Jainarayanan; Anna James-Bott; Kathrin Jansen; Katie Jeffery; Elizabeth Jones; Luke Jostins; Georgina Kerr; David Kim; Paul Klenerman; Julian C Knight; Vinod Kumar; Piyush Kumar Sharma; Prathiba Kurupati; Andrew Kwok; Angela Lee; Aline Linder; Teresa Lockett; Lorne Lonie; Maria Lopopolo; Martyna Lukoseviciute; Jian Luo; Spyridoula Marinou; Brian Marsden; Jose Martinez; Philippa Matthews; Michalina Mazurczyk; Simon McGowan; Stuart McKechnie; Adam Mead; Alexander J Mentzer; Yuxin Mi; Claudia Monaco; Ruddy Montadon; Giorgio Napolitani; Isar Nassiri; Alex Novak; Darragh O'Brien; Daniel O'Connor; Denise O'Donnell; Graham Ogg; Lauren Overend; Inhye Park; Ian Pavord; Yanchun Peng; Frank Penkava; Mariana Pereira Pinho; Elena Perez; Andrew J Pollard; Fiona Powrie; Bethan Psaila; T. Phuong Quan; Emmanouela Repapi; Santiago Revale; Laura Silva-Reyes; Jean-Baptiste Richard; Charlotte Rich-Griffin; Thomas Ritter; Christine S Rollier; Matthew Rowland; Fabian Ruehle; Mariolina Salio; Stephen N Sansom; Alberto Santos Delgado; Tatjana Sauka-Spengler; Ron Schwessinger; Giuseppe Scozzafava; Gavin Screaton; Anna Seigal; Malcolm G Semple; Martin Sergeant; Christina Simoglou Karali; David Sims; Donal Skelly; Hubert Slawinski; Alberto Sobrinodiaz; Nikolaos Sousos; Lizzie Stafford; Lisa Stockdale; Marie Strickland; Otto Sumray; Bo Sun; Chelsea Taylor; Stephen Taylor; Adan Taylor; Supat Thongjuea; Hannah Thraves; John A Todd; Adriana Tomic; Orion Tong; Amy Trebes; Dominik Trzupek; Felicia A Tucci; Lance Turtle; Irina Udalova; Holm Uhlig; Erinke van Grinsven; Iolanda Vendrell; Marije Verheul; Alexandru Voda; Guanlin Wang; Lihui Wang; Dapeng Wang; Peter Watkinson; Robert Watson; Michael Weinberger; Justin Whalley; Lorna Witty; Katherine Wray; Luzheng Xue; Hing Yuen Yeung; Zixi Yin; Rebecca K Young; Jonathan Youngs; Ping Zhang; Yasemin-Xiomara Zurke.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.11.21256877

ABSTRACT

Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete understanding of potentially druggable immune mediators of disease. To advance this, we present a comprehensive multi-omic blood atlas in patients with varying COVID-19 severity and compare with influenza, sepsis and healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity revealed cells, their inflammatory mediators and networks as potential therapeutic targets, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Tensor and matrix decomposition of the overall dataset revealed feature groupings linked with disease severity and specificity. Our systems-based integrative approach and blood atlas will inform future drug development, clinical trial design and personalised medicine approaches for COVID-19.


Subject(s)
COVID-19 , Sepsis
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.22.21255913

ABSTRACT

Objectives: To assess the effectiveness of COVID-19 vaccination in preventing SARS-CoV-2 infection in the community. Design: Prospective cohort study. Setting: The UK population-representative longitudinal COVID-19 Infection Survey. Participants: 373,402 participants aged [≥]16 years contributing 1,610,562 RT-PCR results from nose and throat swabs between 1 December 2020 and 3 April 2021. Main outcome measures: New RT-PCR-positive episodes for SARS-CoV-2 overall, by self-reported symptoms, by cycle threshold (Ct) value (<30 versus [≥]30), and by gene positivity (compatible with the B.1.1.7 variant versus not). Results: Odds of new SARS-CoV-2 infection were reduced 65% (95% CI 60 to 70%; P<0.001) in those [≥]21 days since first vaccination with no second dose versus unvaccinated individuals without evidence of prior infection (RT-PCR or antibody). In those vaccinated, the largest reduction in odds was seen post second dose (70%, 95% CI 62 to 77%; P<0.001).There was no evidence that these benefits varied between Oxford-AstraZeneca and Pfizer-BioNTech vaccines (P>0.9).There was no evidence of a difference in odds of new SARS-CoV-2 infection for individuals having received two vaccine doses and with evidence of prior infection but not vaccinated (P=0.89). Vaccination had a greater impact on reducing SARS-CoV-2 infections with evidence of high viral shedding Ct<30 (88% reduction after two doses; 95% CI 80 to 93%; P<0.001) and with self-reported symptoms (90% reduction after two doses; 95% CI 82 to 94%; P<0.001); effects were similar for different gene positivity patterns. Conclusion: Vaccination with a single dose of Oxford-AstraZeneca or Pfizer-BioNTech vaccines, or two doses of Pfizer-BioNTech, significantly reduced new SARS-CoV-2 infections in this large community surveillance study. Greater reductions in symptomatic infections and/or infections with a higher viral burden are reflected in reduced rates of hospitalisations/deaths, but highlight the potential for limited ongoing transmission from asymptomatic infections in vaccinated individuals. Registration: The study is registered with the ISRCTN Registry, ISRCTN21086382.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Infections
11.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3777194

ABSTRACT

Background: Multiple early hospital cohorts of coronavirus disease 2019 (COVID-19) showed that patients with chronic respiratory disease were significantly under-represented. We hypothesised that the widespread use of inhaled glucocorticoids was responsible for this finding and tested if inhaled glucorticoids would be an effective treatment for early COVID-19 illness. Methods: We conducted a randomised, open label trial of inhaled budesonide, compared to usual care, in adults within 7 days of the onset of mild Covid-19 symptoms. The primary end point was COVID-19-related urgent care visit, emergency department assessment or hospitalisation. The trial was stopped early after independent statistical review concluded that study outcome would not change with further participant enrolment. Results: 146 patients underwent randomisation. For the per protocol population (n=139), the primary outcome occurred in 10 participants and 1 participant in the usual care and budesonide arms respectively (difference in proportion 0.131, p=0.004). The number needed to treat with inhaled budesonide to reduce COVID-19 deterioration was 8. Clinical recovery was 1 day shorter in the budesonide arm compared to the usual care arm (median of 7 days versus 8 days respectively, logrank test p=0.007). Proportion of days with a fever and proportion of participants with at least 1 day of fever was lower in the budesonide arm. Fewer participants randomised to budesonide had persistent symptoms at day 14 and day 28 compared to participants receiving usual care. Conclusion: Early administration of inhaled budesonide reduced the likelihood of needing urgent medical care and reduced time to recovery following early COVID-19 infection.Trial Registration: ClinicalTrials.gov number, NCT04416399Funding: Oxford NIHR Biomedical Research Centre and AstraZenecaDeclaration of Interests: Dr. Ramakrishnan reports grants and non-financial support from Oxford Respiratory NIHR BRC, during the conduct of the study; non-financial support from AstraZeneca, personal fees from Australian Government Research Training Program, outside the submitted work; . Dr. Nicolau has nothing to disclose. Mrs Langford has nothing to disclose. Mr. Mahdi has nothing to disclose. Mrs Helen Jeffers reports personal fees from AstraZeneca, outside the submitted work; . Miss Mwasuku has nothing to disclose. Mrs Krassowska has nothing to disclose. Dr Fox has nothing to disclose. Dr Binnian has nothing to disclose. Dr Glover has nothing to disclose. Dr Bright has nothing to disclose. Dr. Butler reports grants from National Institute for Health Research (NIHR), Roche Molecular Diagnostics, Janssen Pharmaceuticals, and various public funding bodies for research related to diagnostics and infections. He has revcied personal fees from Pfizer INC, Roche Diagnostics, and Janssen Pharmaceuticals, outside the submitted work. Dr. Cane has nothing to disclose. Mr. Halner has nothing to disclose. Dr. Matthews has nothing to disclose. Dr. Donnelly reports grants from AstraZeneca, from Boehringer-Ingelheim, outside the submitted work; . Dr. Simpson has nothing to disclose. Dr Baker has nothing to disclose. Dr. Fadai has nothing to disclose. Dr. Peterson reports personal fees from AstraZeneca, outside the submitted work; . Mr. Bengtsson reports personal fees from AstraZeneca, outside the submitted work; Dr. Barnes reports grants and personal fees from AstraZeneca, grants and personal fees from Boehringer Ingelheim, personal fees from Teva, personal fees from Covis, during the conduct of the study; Dr. Russell reports grants from AstraZeneca, personal fees from Boehringer Ingelheim, personal fees from Chiesi UK, personal fees from Glaxo-SmithKline, during the conduct of the study; . Dr. Bafadhel reports grants from AstraZeneca, personal fees from AstraZeneca, Chiesi, GSK, other from Albus Health, ProAxsis, outside the submitted work; .Ethics Approval Statement: The trial was sponsored by the University of Oxford, and was approved by the Fulham London Research Ethics Committee (20/HRA/2531) and the National Health Research Authority.The ethical approval number is 20/HRA/2531.


Subject(s)
COVID-19 , Fever , Respiratory Tract Infections , Coronavirus Infections
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.15.426787

ABSTRACT

IntroductionVarious CT severity scores have already been described in literature since the start of this pandemic. One pertinent issue with all of the previously described severity scores is their relative challenging calculation and variance in inter-observer agreement. The severity score proposed in our study is relatively simpler, easier to calculate and apart from a trained radiologist, can easily be calculated even by physicians with good inter-observer agreement. Therefore, a rapid CT severity score calculation can give a clue to physician about possible clinical outcome without being dependent on radiologist who may not be readily available especially in third world countries. ObjectiveThe objective of this study is to develop a simple CT severity score (CT-SS) with good inter-observer agreement and access its correlation with clinical outcome. MethodsThis retrospective study was conducted by the Department of Radiology and Internal Medicine, at the Aga Khan University Hospital Karachi, from April 2020 to August 2020. Non-probability consecutive sampling was used to include all patients who were positive for COVID-19 on PCR, and underwent CT chest examination at AKUH. Severity of disease was calculated in each lobe on the basis of following proposed CT severity scoring system (CT-SS). For each lobe the percentage of involvement by disease was scored - 0% involvement was scored 0, <50% involvement was scored 1 and >50% involvement was scored 2. Maximum score for one lobe was 2 and hence total maximum overall score for all lobes was 10. Continuous data was represented using mean and standard deviation, and compared using independent sample t-tests. Categorical data was represented using frequencies and percentages, and compared using Chi-squared tests. Inter-observer reliability between radiologist and COVID intensivist for the 10 point CT-SS rated on 0-10 was assessed using the Kappa statistic. A p-value < 0.05 was considered significant for all analyses. ResultsA total of 73 patients were included, the majority male (58.9%) with mean age 55.8 {+/-} 13.93 years. The CT-SS rated on 0-10 showed substantial inter-observer reliability between radiologist and intensivist with a Kappa statistic of 0.78. Patients with CT-SS 8-10 had a significantly higher ICU admission & intubation rate (53.8% vs. 23.5%) and mortality rate (35.9% vs. 11.8%; p = 0.017), as compared to those with CT-SS 0-7. ConclusionWe conclude that the described CT severity score (CT-SS) is a quick, effective and easily reproducible tool for prediction of adverse clinical outcome in patients with COVID 19 pneumonia. The tool shows good inter-observer agreement when calculated by radiologist and physician independently.


Subject(s)
COVID-19 , Pneumonia
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.13.21249721

ABSTRACT

BackgroundA new variant of SARS-CoV-2, B.1.1.7/VOC202012/01, was identified in the UK in December-2020. Direct estimates of its potential to enhance transmission are limited. MethodsNose and throat swabs from 28-September-2020 to 2-January-2021 in the UKs nationally representative surveillance study were tested by RT-PCR for three genes (N, S and ORF1ab). Those positive only on ORF1ab+N, S-gene target failures (SGTF), are compatible with B.1.1.7/VOC202012/01. We investigated cycle threshold (Ct) values (a proxy for viral load), percentage of positives, population positivity and growth rates in SGTF vs non-SGTF positives. Results15,166(0.98%) of 1,553,687 swabs were PCR-positive, 8,545(56%) with three genes detected and 3,531(23%) SGTF. SGTF comprised an increasing, and triple-gene positives a decreasing, percentage of infections from late-November in most UK regions/countries, e.g. from 15% to 38% to 81% over 1.5 months in London. SGTF Ct values correspondingly declined substantially to similar levels to triple-gene positives. Population-level SGTF positivity remained low (<0.25%) in all regions/countries until late-November, when marked increases with and without self-reported symptoms occurred in southern England (to 1.5-3%), despite stable rates of non-SGTF cases. SGTF positivity rates increased on average 6% more rapidly than rates of non-SGTF positives (95% CI 4-9%) supporting addition rather than replacement with B.1.1.7/VOC202012/01. Excess growth rates for SGTF vs non-SGTF positives were similar in those up to high school age (5% (1-8%)) and older individuals (6% (4-9%)). ConclusionsDirect population-representative estimates show that the B.1.1.7/VOC202012/01 SARS-CoV-2 variant leads to higher infection rates, but does not seem particularly adapted to any age group.

14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.02.20224824

ABSTRACT

BackgroundSARS-CoV-2 IgG antibody measurements can be used to estimate the proportion of a population exposed or infected and may be informative about the risk of future infection. Previous estimates of the duration of antibody responses vary. MethodsWe present 6 months of data from a longitudinal seroprevalence study of 3217 UK healthcare workers (HCWs). Serial measurements of IgG antibodies to SARS-CoV-2 nucleocapsid were obtained. Bayesian mixed linear models were used to investigate antibody waning and associations with age, gender, ethnicity, previous symptoms and PCR results. ResultsIn this cohort of working age HCWs, antibody levels rose to a peak at 24 (95% credibility interval, CrI 19-31) days post-first positive PCR test, before beginning to fall. Considering 452 IgG seropositive HCWs over a median of 121 days (maximum 171 days) from their maximum positive IgG titre, the mean estimated antibody half-life was 85 (95%CrI, 81-90) days. The estimated mean time to loss of a positive antibody result was 137 (95%CrI 127-148) days. We observed variation between individuals; higher maximum observed IgG titres were associated with longer estimated antibody half-lives. Increasing age, Asian ethnicity and prior self-reported symptoms were independently associated with higher maximum antibody levels, and increasing age and a positive PCR test undertaken for symptoms with longer antibody half-lives. ConclusionIgG antibody levels to SARS-CoV-2 nucleocapsid wane within months, and faster in younger adults and those without symptoms. Ongoing longitudinal studies are required to track the long-term duration of antibody levels and their association with immunity to SARS-CoV-2 reinfection. SummarySerially measured SARS-CoV-2 anti-nucleocapsid IgG titres from 452 seropositive healthcare workers demonstrate levels fall by half in 85 days. From a peak result, detectable antibodies last a mean 137 days. Levels fall faster in younger adults and following asymptomatic infection.

15.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-91353.v2

ABSTRACT

Serological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, detection of seroconversion after vaccination, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests have a long history in blood typing, and general serology through linkage of reporter molecules to the red cell surface. They do not require special equipment, are read by eye, have short development times, low cost and can be applied as a Point of Care Test (POCT). We describe a red cell agglutination test for the detection of antibodies to the SARS-CoV-2 receptor binding domain (RBD). We show that the Haemagglutination Test (HAT) has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. The HAT can be titrated, detects rising titres in the first five days of hospital admission, correlates well with a commercial test that detects antibodies to the RBD, and can be applied as a point of care test. The developing reagent is composed of a previously described nanobody to a conserved glycophorin A epitope on red cells, linked to the RBD from SARS-CoV-2. It can be lyophilised for ease of shipping. We have scaled up production of this reagent to one gram, which is sufficient for ten million tests, at a cost of ~0.27 UK pence per test well. Aliquots of this reagent are ready to be supplied to qualified groups anywhere in the world that need to detect antibodies to SARS-CoV-2, but do not have the facilities for high throughput commercial tests.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL